Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Computational models of evolution are valuable for understanding the dynamics of sequence variation, to infer phylogenetic relationships or potential evolutionary pathways and for biomedical and industrial applications. Despite these benefits, few have validated their propensities to generate outputs with in vivo functionality, which would enhance their value as accurate and interpretable evolutionary algorithms. We demonstrate the power of epistasis inferred from natural protein families to evolve sequence variants in an algorithm we developed called sequence evolution with epistatic contributions (SEEC). Utilizing the Hamiltonian of the joint probability of sequences in the family as fitness metric, we sampled and experimentally tested for in vivo -lactamase activity inEscherichia coliTEM-1 variants. These evolved proteins can have dozens of mutations dispersed across the structure while preserving sites essential for both catalysis and interactions. Remarkably, these variants retain family-like functionality while being more active than their wild-type predecessor. We found that depending on the inference method used to generate the epistatic constraints, different parameters simulate diverse selection strengths. Under weaker selection, local Hamiltonian fluctuations reliably predict relative changes to variant fitness, recapitulating neutral evolution. SEEC has the potential to explore the dynamics of neofunctionalization, characterize viral fitness landscapes, and facilitate vaccine development.more » « less
-
null (Ed.)We introduce a model of amino acid sequence evolution that accounts for the statistical behavior of real sequences induced by epistatic interactions. We base the model dynamics on parameters derived from multiple sequence alignments analyzed by using direct coupling analysis methodology. Known statistical properties such as overdispersion, heterotachy, and gamma-distributed rate-across-sites are shown to be emergent properties of this model while being consistent with neutral evolution theory, thereby unifying observations from previously disjointed evolutionary models of sequences. The relationship between site restriction and heterotachy is characterized by tracking the effective alphabet dynamics of sites. We also observe an evolutionary Stokes shift in the fitness of sequences that have undergone evolution under our simulation. By analyzing the structural information of some proteins, we corroborate that the strongest Stokes shifts derive from sites that physically interact in networks near biochemically important regions. Perspectives on the implementation of our model in the context of the molecular clock are discussed.more » « less
An official website of the United States government
